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Abstract. KETJE, a lightweight authenticated encryption cipher is a third-round candidate of CAESAR 

competition whose design principles are similar to SHA-3 hash function. Fuhr et al. studied the security of 

KETJE JR against divide-and-conquer attacks and proposed state-recovery attacks on modified KETJE JR. In 

this paper, we study the relations among the algebraic representations of internal state bits, and find new 

guessing strategies based on Fuhr et al.'s method. With the usage of new guessing strategies, we improve the 

state-recovery attacks on KETJE JR v1 when r=40 and r=32. Compared with Fuhr et al.'s work, our results are 

more efficient. The relults do not threaten the security of KETJE in practice, but provide evidence for 

improving the efficiency of KETJE by increasing the rate. 
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1. Introduction 

Authenticated encryption algorithm is a cryptograpic primitive that provides both confidentiality and 

authentication protection, e.g. the widely used AES-GCM [1]. However, the current works demonstrate that 

such an algorithm may not be as strong as we hope. In particular, when the message for encryption is 

overlong or the initial vector is reused, its security will be seriously threatened. 

In 2013, International Association for Cryptologic Research (IACR) launched the CAESAR competition 

to solicit potentially proper authenticated encryption algorithms with associated data (AEAD) that are 

required to ensure the confidentiality and integrity of a message as well as the integrity of the so-called 

associated data. KETJE, designed by the KECCAK team, is one of the 15 candidates for the third-round of the 

ongoing CAESAR competition. Its design principle relies on the Monkey Wrap [2] mode of operation, which 

is derived from Sponge Structure [3]. The internal permutation of KETJE is a round-reduced version of 

KECCAK permutation. In KETJE v1 [2], there are two versions, KETJE JR and KETJE SR, with 200-bit and 

400-bit internal states respectively. In the third round of the competition, the design team proposed KETJE v2 

[4]. Compared to KETJE v1, KETJE v2 includes two new variants called KETJE MINOR and KETJE MAJOR, 

with larger internal state sizes (800 bits and 1600 bits respectively) and a modified keystream extraction. 

The candidates were opened by the competition to call for security evaluations. Since KETJE uses similar 

internal components as KECCAK, it has received widespread attentions from the very beginning. So far, there 

are many attacks on KETJE. In 2017, Dong et al. [5] described key recovery attacks on 6/7-round KETJE SR 

using cube-like attack. In the same year, Li et al. [6] proposed key recovery attacks on round-reduced KETJE 

MINOR and KETJE MAJOR based on conditional cube attack, and evaluated the security of KETJE MINOR and 

KETJE MAJOR with initial vectors of different length against cube attack. Song et al. [7] proposed a new 

Mixed-Integer Linear Programming (MILP) model for finding conditional cubes, and provided key recovery 

attacks on 7-round KETJE MINOR and KETJE MAJOR. In 2018, Bi et al. [8] performed key recovery attacks on 

KETJE MINOR and KETJE MAJOR based on MILP mode of cube-like attack which require fewer initial 

vectors than Ref. [6]. Song et al. [9] improved the cube-like attacks on 5-round KETJE JR and 7-round KETJE 
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SR based on MILP techniques. In addition, by introducing the kernel quadratic term to overcome the problem 

of few degrees of freedom, Li et al. [10] further improved the results of conditional cube attacks on KETJE 

SR. Based on the same idea, Zhou et al. [11] gave a practical key recovery attack on 5-round KETJE JR. In 

addition, in 2018, Fuhr et al. [12] proposed a state-recovery attack on the modified KETJE JR with the usage 

of the divide-and-conquer method. 

At the same time, KETJE’s design team launched a challenge for the security analysis of KETJE, in order 

to encourage experts and scholars to participate in the cryptanalysis of various variants of KETJE as well as 

its weakened versions. And the team has shown a special interest in state-recovery attacks, including 

increases in the rate of the Monkey Wrap construction. 

In this paper, we study state-recovery attacks on KETJE JR v1 when the bit rates are r=40 and r=32. The 

main contributions are as follows: When r=40, by analyzing the relationship among the algebraic 

representations of the state bits in   [     ], we propose a new guessing strategy for the state   . While 

reducing the number of bits to be guessed, we can still get enough algebraic relations that satisfy the divide-

and-conquer attack conditions. When r=32, we take advantage of   [     ] to establish the linear relationship 

between the unknown bits of   [     ] and the state needed to be recovered, and significantly reduce the 

search complexity of the state-recovery attack combined with the new guessing strategy of   . The results 

are summarized in Table 1. 

Table 1: State-recovery attacks on KETJE JR 

Algorithm  Bit rate 
Number of 

key blocks 

Sieving 

method 

Computational 

complexity 

Search 

complexity 

Memory 

complexity 
Source 

KETJE JR v1 r=32 n=4 Pg 2
87

 2
92

 2
65.82

 [12] 

KETJE JR v1 r=32 n=4 Pg 2
87

 2
86

 2
65.89

 Section 5 

KETJE JR v1 r=40 n=4 Pg 2
73

 2
70

 2
63.87

 [12] 

KETJE JR v1 r=40 n=4 Pg 2
71

 2
70

 2
65.89

 Section 4 

KETJE JR v1 r=40 n=4 Lm 2
71.5

 2
70

 2
63.87

 [12] 

Pg: Preliminary guessing; Lm: List merging. 

The rest of the paper is organized as follows: we briefly summarize the KETJE JR algorithm in section 2. 

And then, we introduces the basic ideas of the state-recovery attack on KETJE JR based on the divide-and-

conquer strategy in section 3. Section 4 gives an improved state-recovery attack on KETJE JR using four 

consecutive blocks when r=40, and Section 5 studies and gives an improved state-recovery attack on KETJE 

JR when r=32. Finally, some conclusions are drawn. 

2. Introduction of KETJE JR 

KETJE relies on the Monkey Wrap
 
mode of operation and the round-reduced version of KECCAK 

permutation. This section provides a brief introduction to KETJE JR and focuses on the components involved 

in the following analysis. 

2.1. The Monkey Wrap Mode of O   peration 

The Monkey Wrap mode of operation is a mode for authentication encryption with associated data based 

on the sponge construction. It consists of four parts: initialization, association data processing, plaintext 

processing and tag extraction, which enables the authentication encryption of multiple plaintexts and 

associated data. For more details, please refer to Ref. [4].  

2.2. KECCAK-p P  ermutation 

KECCAK-p permutations are derived from KECCAK-f permutations [13] and have a tunable number of 

rounds. According to its width b and its number of rounds 𝑛𝑟, KECCAK-p permutation is usually denoted as 

KECCAK-p[𝑏 𝑛𝑟], and KECCAK-p for short. For KETJE JR, KECCAK-p permutation is described as a sequence 

of operations on a state A of 200 bits that can be regarded as a 5×5×8 three-dimensional array on GF(2). 

 [𝑥 𝑦 𝑧] represents the bit at the coordinate [𝑥 𝑦 𝑧], corresponding to the (4 𝑦 + 8𝑥 + 𝑧)-th bit of the 

internal state. For simplicity, we use the same terms as the authors did in Ref. [14]. 
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KECCAK-p is an iterated permutation, consisting of a sequence of 𝑛𝑟 rounds 𝐹. 𝐹 consists of five steps : 

𝐹 = 𝜄 ∘ 𝜒 ∘ 𝜋 ∘ 𝜌 ∘ 𝜃, where 

𝜃： [𝑥 𝑦 𝑧] =  [𝑥 𝑦 𝑧]⨁∑  [𝑥 − 1   𝑧]4
𝑖=0 ⨁∑  [𝑥 + 1   𝑧 − 1]4

𝑖=0 , 

𝜌： [𝑥 𝑦 𝑧] =  [𝑥 𝑦 𝑧 − 𝑟[𝑥 𝑦]], 

𝜋： [𝑦 2𝑥 + 3𝑦  ] =  [𝑥 𝑦  ], 

𝜒： [𝑥 𝑦 𝑧] =  [𝑥 𝑦 𝑧]⨁( [𝑥 + 1 𝑦 𝑧]⨁1) [𝑥 + 2 𝑦 𝑧], 

𝜄： [     ] =  [     ]⨁𝑅 [ 𝑟]. 

𝜃 is a linear transformation. Each bit  [𝑥 𝑦 𝑧] is XORed with all bits in two adjacent columns  [𝑥 − 1  

 𝑧] and  [𝑥 + 1   𝑧 − 1]. 𝜌 provides diffusion between the slices of the state. It consists of different cyclic 

shifts. The cyclic shift constants can refer to Ref. [14]. 𝜋  is a substitution operation on the coordinate 

position (x, y). 𝜒 is the only nonlinear operation of the round function 𝐹 , which can be regarded as a 

nonlinear transformation for each row of the state A. 𝜄 is a constant addition to add a round constant to 

 [     ]. The values of the round constants 𝑅 [ 𝑟] are given in Ref. [2], which will not be detailed here. 

2.3. Keystream Extraction 

According to the construction of Monkey Wrap, the first r bits of the internal state are extracted as the 

keystream after Nstep rounds of KECCAK-p permutation, and r is called bit rate. In addition, according to the 

correspondence between internal state bits and coordinates [𝑥 𝑦 𝑧], for KETJE JR v1, the keystream bits are 

located on the same plane  [     ] when 𝑟 ≤ 4 . 

This paper stipulates that all counts start from 0, the left side of the data is the least significant bit, and 

the right side is the most significant bit. In addition, unless otherwise specified below, KETJE JR refers to 

KETJE JR v1. 

3. State-recovery Attacks on KETJE JR based on Divide-and-conquer Strategy 

KETJE JR supports a key K of variable length up to 182 bits, and the recommended key length is 96 bits. 

The security claimed by the authors for KETJE JR is determined by 𝑚 𝑛 (96 𝑘) for a key of size k. Based on 

the idea of meet-in-the-middle and the divide-and-conquer strategy, Ref. [12] gives state-recovery attacks on 

modified KETJE JR whose computation complexities are lower than exhaustive attack by using several 

consecutive blocks of keystream. The following is a brief introduction to the basic idea of this attack. For 

details, please refer to Ref. [12]. Assume that the size of each keystream block is 40 bits, i.e. 𝑟 = 4 . 

3.1. Divide-and-conquer F  ramework 

Divide-and-conquer is a common technique in cryptanalysis [15-18]. Its main idea is to decompose a 

problem that is difficult to solve directly into some smaller sub-problems. These sub-problems are 

independent of each other and have the same form as the original problem. These sub-problems can be 

solved in turn, then the solutions of these sub-problems are combined to obtain the solution of the original 

problem. 

The state-recovery attack on KETJE JR based on the divide-and-conquer strategy can be formalized as a 

such problem: given a set 𝒰 and a set 𝒲, denote ℋ: (𝒰 𝒲) ⟶ 𝐺𝐹(2)𝑑 as a function defined on (𝒰 𝒲), 

find all 𝑢 ∈ 𝒰 and 𝑤 ∈ 𝒲 such that ℋ(𝑢 𝑤) = 𝑡. For this problem, it is usually necessary to traverse all 

possible 𝑢 ∈ 𝒰  and 𝑤 ∈ 𝒲 . Hence the corresponding computational complexity is 𝑂(|𝒰| ∙ |𝒲|). If the 

function ℋ(𝑢 𝑤) is in the form of ℋ(𝑢 𝑤) = 𝑓(𝑢)⨁𝑔(𝑤), correspondingly the problem is to find the 

solution of ℋ(𝑢 𝑤) = 𝑓(𝑢)⨁𝑔(𝑤) = 𝑡 , one can use the divide-and-conquer strategy. First, traverse all 

possible 𝑢 ∈ 𝒰 to compute 𝑓(𝑢) and store (𝑢 𝑓(𝑢)) in a list sorted according to the value of 𝑓(𝑢)⨁𝑡. Then, 

traverse all possible 𝑤 ∈ 𝒲  to compute 𝑔(𝑤) and search the list to find all 𝑢 ∈ 𝒰  such that 𝑓(𝑢)⨁𝑡 =

𝑔(𝑤). Such (𝑢 𝑤) is a solution of ℋ(𝑢 𝑤) = 𝑡. 

The computational complexity of the above process based on the divide-and-conquer strategy is |𝒰| +
|𝒲|, and the memory complexity is |𝒰|(log (|𝒰|) + 𝑑), where |𝒰| is the number of elements in 𝒰 and 
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log (|𝒰|) represents the bit size of |𝒰|. The search complexity is |𝒰| × |𝒲| × 2−𝑑, which is determined by 

the number of possible solutions. 

3.2. Divide-and-conquer Attack on KETJE JR 

The basic idea of the state-recovery attack on KETJE JR based on the divide-and-conquer strategy is as 

follows: The internal state of KETJE JR to be restored is divided into two parts. According to the 

transformations in KETJE JR, algebraic equations of the internal state satisfying the divide-and-conquer attack 

can be constructed from the known output blocks of keystream. By using the divide-and-conquer strategy, all 

possible values of two parts of the internal state are traversed separately, and two lists are constructed 

correspondingly. Search the lists to find the elements satisfying the above algebraic equations, and combine 

the corresponding two partial state values as a candidate. Then, all the candidates are tested in turn until the 

correct internal state is obtained. The state-recovery attack on KETJE JR using 3 known consecutive blocks of 

keystream is shown in Fig. 1. 

A0 B0 C0 A1 B1 C1 A2

Guess

ρπ χι θ ρπ χι

Deduce f1(A
u)⊕g1(A

w) f2(A
u)⊕g2(A

w) 

: Known bits : Bits derived from Au
: Bits derived from Aw

: Bits with the form of f(Au)⊕g(Aw) : Bits used to sieve

θ

Inverse

Compute

 
Fig. 1: Schematic diagram of the state-recovery attack on KETJE JR using 3 consecutive keystream blocks. 

 0[     ]   [     ]   [     ]  are three known consecutive blocks of keystream.  0  is the state 

containing the first known keystream block.  0 is the value of the state after applying 𝜃 to  0 , and  0 is the 

state after applying 𝜌 and 𝜋 to  0.    represents the state after applying χ and ι to  0, which contains the 

second keystream block.          can be deduced by analogy. 

The basic idea of recovering the full state    based on the divide-and-conquer strategy is to guess the 

front half state  𝑢(  [     ]   [    1]   [    2]   [    3]) and the back half state  𝑤(  [    4]   [   

 5]   [    6]   [    7] ) of the state    respectively. It is worthy of note that if the keystream block 

  [     ] is known,   [     ] can be deduced. Since 𝜃 𝜌 𝜋 are all linear permutations, each bit of   [     

] can be expressed as a linear function of   , that is   [     ] = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤). In addition, given  𝑢 and 

 𝑤, the front half state  𝑢 and the back half state  𝑤 of the state  0 can be determined correspondingly. 

According to the inverses of 𝜃 𝜌 𝜋, each bit of  0[     ]  can be expressed as a linear function of  0, that is 

 0[     ] = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤). We then define 

𝑓( 𝑢) = (𝑓 ( 
𝑢) 𝑓 ( 

𝑢)), 𝑔( 𝑤) = (𝑔 ( 
𝑤) 𝑔 ( 

𝑤)). 

The state-recovery attack on    based on the divide-and-conquer strategy is to find all  𝑢 and  𝑤 that 

satisfy 

(  [     ]  0[     ]) = 𝑓( 𝑢)⨁𝑔( 𝑤). 

In the above state-recovery attack, since the keystream block   [     ] is known, the bits that need to be 

guessed in the front half  𝑢 and the back half  𝑤 of the state    are 80. The corresponding computational 

complexity is 280 evluations of 𝑓 and 𝑔, the memory complexity is 280 × 16 , and the search complexity is 

280 × 280 × 2−80 = 280. 

4. Improved State-recovery Attack on KETJE JR when r=40 

When r=40, the number of possible internal state values is 240 if there are 4 consecutive keystream 

blocks that are known. At this time, the state-recovery attack on KETJE JR based on the divide-and-conquer 

strategy is similar to section 3.2. The difference is that we need to use  0[     ]  and   [     ] (  ∈

   1 2 3 4 ) to establish algebraic equations. Since each bit of   [     ] is a nonlinear function of   , in order 

to meet the conditions of divide-and-conquer, Ref. [12] gives a method called preliminary guessing. By 

guessing partial values of   , the representations of some bits in   [     ] can be derived from the function 
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of front half and the function of back half of   , and then we can combine  0[     ] to sieve the guessed 

internal state values. We first briefly analyze the complexity of this state-recovery attack on KETJE JR (see 

Ref. [12] for details), and then give an improved guessing strategy combined with its complexity analysis. 

  

Fig. 2 is a schematic diagram of 3-round KETJE JR with r=40. The parts are colored in yellow, blue, 

purple, and black representing the known state bits after different transformations.  0[     ]   [     ]   [ 

    ]   [     ] are 4 known consecutive blocks of keystream. Assuming that    is the internal state needed 

to be restored, based on the idea of divide-and-conquer, the unknown bits in the front half  𝑢 and the back 

half  𝑤  of    are guessed separately. Then, the guessed state values are sieved by the known bits in 

        . In order to establish the algebraic equations of  𝑢 and  𝑤  using   [     ]( ∈    1 2 3 4 ) that 

satisfies the conditions of divide-and-conquer, Ref. [12] guesses some bits of   . Assuming that 𝑚 bits of    

are guessed, the number of algebraic equations that can be established by   [     ]  is 𝑅 , then the 

computational complexity of the state-recovery attack based on the divide-and-conquer strategy is 2    
 . 

The search complexity is 280− . The memory complexity is (115 + 𝑅 − 𝑚 2⁄ ) × 2  − 
 . 

ρπ χι θθ

ρπ

χιρπχι θ

A0 B0 C0 A1 B1

C1A2B2C2A3

 
Fig. 2: Schematic diagram of 3-round KETJE JR when r=40. 

In Ref. [12], by guessing 𝑚 = 16 bits of   , the number of algebraic equations that can be established 

to satisfy the conditions of divide-and-conquer is 𝑅 = 1 . The corresponding computational complexity is 

2  , the search complexity is 2 0, and the memory complexity is 117 × 2  −8  2   8 . 

   

Notice that the computational complexity and the search complexity in the state-recovery attack above 

are bottlenecks of the entire process. In Ref. [12], in order to express the bits of   [     ] as the sum of the 

front half and the back half of   , it is required that each state bit in two consecutive slices of    is a 

function of  𝑢  or  𝑤 . Thus they need to guess all state bits involved in the corresponding slice of   . 

However, this guessing strategy does not take full advantage of the relationships between the algebraic 

representations of the bits in   [     ]  and the algebraic equations derived from them. Based on this 

consideration, the following gives an improved state-recovery attack on KETJE JR using 4 keystream blocks 

when r=40. 

ρπ χι θθ

A0 B0 C0 A1 B1 C1 A2 B2 C2 A3

ρπ χι θ ρπ χι

Guess
Deduce SieveSieve

: Known bits

Inverse ComputeCheck Inverse Compute

: Known bits

: Known bits : Bits used to sieve

: Bits derived from Au
: Bits with the form of f(Au)⊕g(Aw) 

: Bits without the form of f(Au)⊕g(Aw) : Bits derived from Aw

 
Fig. 3: Schematic diagram of the state-recovery attack on KETJE JR using 4 keystream blocks (r=40). 

Suppose that    is the internal state needed to be restored. Following up the definitions in Ref. [12],  𝑢 

is defined as a 105-bit state composed of the front half of    and 5 parity bits  

  [7] = (  [  7]   [1 7]   [2 7]   [3 7]   [4 7]), 

 𝑤 is defined as a 105-bit state composed of the back half of    and 5 parity bits  

  [3] = (  [  3]   [1 3]   [2 3]   [3 3]   [4 3]), 
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where   [𝑥 𝑧] = ∑  [𝑥   𝑧]4
𝑖=0 . Then each bit in    can be expressed as a linear function of  𝑢 or  𝑤. 

We need to guess the unknown bits in  𝑢 and  𝑤 respectively. Since   [     ] is known, the number of 

unknown bits in  𝑢  and  𝑤  are both 85. In addition, given   [     ],   [     ]( ∈    1 2 3 4 ) can be 

obtained as is shown in Fig. 3. Thus, 20 linear check relations with respect to 85 unknown bits can be 

established, and the final number of free unknown bits in  𝑢 and  𝑤 is 65 by using Gaussian elimination. 

From the above discussion, if  𝑢  and  𝑤  are known, the front half  𝑢 ( 0[     ]  0[    1]  0[   

 2]  0[    3]) and the back half  𝑤 ( 0[    4]  0[    5]  0[    6]  0[    7]) of  0  can be determined 

correspondingly. According to the inverse transformations of 𝜃 𝜌 𝜋, each bit of  0[     ] can be expressed 

as a linear function of  0. Without loss of generality, denote 

 0[     ] = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤).                                                            (1) 

In addition, from   [𝑥 𝑧] = ∑  [𝑥   𝑧]4
𝑖=0 , we can easily deduce 

  [3] = 𝑓 ( 
𝑢),   [7] = 𝑔 ( 

𝑤).                                                           (*) 

From the definition of  𝑢  and  𝑤 ,   [7]  and   [3]  are contained in  𝑢  and  𝑤  respectively. Let 

  [3] = 𝑔 ( 
𝑤) and   [7] = 𝑓 ( 

𝑢), and substitute them in the formula (*). Then we have 

  = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤),                                                              (2) 

  = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤).                                                              (3) 

   represents the concatenation of 5 bits 0. 

In summary, from the known keystream block  0[     ] and the parity bits   [7],   [3], 50 linear 

equations with respect to  𝑢 and  𝑤 can be established to sieve the guesses of  𝑢 and  𝑤. So far, for the 4 

known consecutive keystream blcoks-- 0[     ]   [     ]   [     ]   [     ] , only   [     ]  has not 

been used. Actually, given   [     ] ,   [     ] (  ∈    1 2 3 4 ) can be obtained by the inverse 

transformations. Nevertheless, due to the existence of 𝜒, many bits of    cannot be expressed in the form of 

𝑓( 𝑢)⨁𝑔( 𝑤). That is to say, there exists the unwanted term 𝑓( 𝑢)𝑔( 𝑤) in their algebraic equations. So 

that, after applying θ to   , even if   [     ] and its algebraic equation are known,   [     ] cannot be used 

for sieving since the conditions of the divide-and-conquer attack are not satisfied. For this reason, we give a 

new guessing strategy for   . Compared with Ref. [12], by using the relationship between the algebraic 

representations of bits in   [     ] , it is possible to obtain enough algebraic equations that satisfy the 

conditions of divide-and-conquer attack while reducing the guessed bits. We expand the transition from    

to    in Fig. 3 in terms of slice (as shown in Fig. 4). 

Slice 0 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7

ρπ

θ

χι

ρπ

θ

χι

A1

B1

C1

A2

B2

C2

A3

: Known bits

: Known bits

: Bits derived from Au

: Bits derived from Aw

: Known bits

: Bits used for sieve

: Bits with the form of f(Au)⊕g(Aw) 

: Bits without the form of f(Au)⊕g(Aw)  
Fig. 4: Expanded diagram of state transition from    to   . 
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In order to establish enough algebraic equations that satisfy the conditions of divide-and-conquer by   , 

we guess 6 bits of  𝑢 

  [1 2  ],  [3 2  ],  [1 2 2],  [  4 2],  [1 3 3],  [3 3 3], 

and 6 bits of  𝑤 

  [1 2 4],  [3 2 4],  [1 2 6],  [  4 6],  [1 3 7],  [3 3 7], 

respectively, totaling 12 bits (as shown in Fig. 5). Then the form of the algebraic equation of each bit in 

   is shown in Fig. 5. 

In Fig. 5, each small square colored in white of    indicates that the quadratic term 𝑓( 𝑢)𝑔( 𝑤) is 

contained in its algebraic equation. For example,   [1 1  ] =   [1 1  ]⨁(  [2 1  ]⨁1)  [3 1  ].  

Let   [1 1  ] = 𝑓 ( 
𝑢),   [2 1  ]⨁1 = 𝑓 ( 

𝑢) and   [3 1  ] = 𝑔 ( 
𝑤), then  

  [1 1  ] = 𝑓 ( 
𝑢)⨁𝑓 ( 

𝑢)𝑔 ( 
𝑤). 

For convenience, let   =   [1 1  ]   =   [3 1  ]    40 =   [3 4 7], and denote the known bits of 

each slice in    as ( 0 𝑏0  0 𝑑0  0) (   𝑏     𝑑    )   (   𝑏     𝑑    ), then: 

 0 =    ⨁   ⨁   
, 

𝑏0 =   ⨁   
, 

 0 =   ⨁  ⨁  ⨁ 40⨁   , 

𝑑0 =  4⨁  8⨁ 𝑑 
, 

 0 =   ⨁ 4⨁  ⨁   ⨁   ⨁   
, 

 4 =    ⨁   ⨁   
, 

𝑏4 =    ⨁   
, 

 4 =    ⨁   ⨁   ⨁  0⨁   , 

𝑑4 =   4⨁  8⨁ 𝑑 
, 

 4 =    ⨁  4⨁   ⨁   ⨁   ⨁   
, 

  =   ⨁  ⨁  ⨁   
, 

𝑏 =    
, 

  =   ⨁  ⨁  ⨁ 4⨁  ⨁   , 

𝑑 =   ⨁  0⨁   ⨁ 𝑑 
, 

  =  8⨁  0⨁   ⨁   
, 

  =    ⨁   ⨁   ⨁   
, 

𝑏 =    
, 

  =    ⨁   ⨁   ⨁  4⨁   ⨁   , 

𝑑 =    ⨁  0⨁   ⨁ 𝑑 
, 

  =   8⨁  0⨁   ⨁   
, 

  =   ⨁   
, 

𝑏 =    ⨁  ⨁   ⨁   
, 

  =  8⨁  0⨁   ⨁   , 

𝑑 =   4⨁ 𝑑 
, 

  =   4⨁   
, 

  =    ⨁   
, 

𝑏 =    ⨁   ⨁   ⨁   
, 

  =   8⨁  0⨁   ⨁   , 

𝑑 =   4⨁ 𝑑 
, 

  =   4⨁   
, 

  =   8⨁   
, 

𝑏 =    ⨁   ⨁   ⨁   
, 

  =    ⨁   ⨁  4⨁   , 

𝑑 =  𝑑 
, 

  =   0⨁   ⨁   
。 

  =   8⨁   
, 

𝑏 =    ⨁   ⨁   ⨁   
, 

  =    ⨁   ⨁  4⨁   , 

𝑑 =  𝑑 
, 

  =  40⨁   ⨁   
。 
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Fig. 5: Expanded diagram of state transition of    based on preliminary guessing. 
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In above algebraic equations,    denotes   = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤),  ∈   0 𝑏0  0 𝑑0  0      𝑏     𝑑     . 

Through Gaussian elimination, it can be known that the rank of the above system with 40 variables 

         40 is 30, and  

𝑏 =    
, 𝑏 =    

, 

𝑑 =  𝑑 
, 𝑑 =  𝑑 

, 

  ⨁  =    
⨁   ,   ⨁  =    

⨁   , 

𝑑 ⨁  =  𝑑 
⨁   

, 𝑑 ⨁  =  𝑑 
⨁   

, 

 0⨁  ⨁  =    
⨁   

⨁   ,  4⨁  ⨁  =    
⨁   ⨁   

. 

Let  = (𝑏  𝑏  𝑑  𝑑    ⨁     ⨁   𝑑 ⨁   𝑑 ⨁    0⨁  ⨁    4⨁  ⨁  ), then   can be expressed 

as the following form: 

 = 𝑓4( 
𝑢)⨁𝑔4( 

𝑤),                                                               (4) 

Create the simultaneous equations from formula (1) ~ formula (4) and define: 

𝑓( 𝑢) = (𝑓 ( 
𝑢) 𝑓 ( 

𝑢) 𝑓 ( 
𝑢) 𝑓4( 

𝑢)), 

𝑔( 𝑤) = (𝑔 ( 
𝑤) 𝑔 ( 

𝑤) 𝑔 ( 
𝑤) 𝑔4( 

𝑤)). 

Then, we have ( 0[     ]        ) = 𝑓( 𝑢)⨁𝑔( 𝑤). 

In summary, when r=40, the number of algebraic equations that can be established in the improved state-

recovery attack on KETJE JR based on the preliminary guessing is 10 by guessing 12 bits of   . The 

corresponding computational complexity is 2     
 = 2  , the search complexity is 280− 0 = 2 0, and the 

memory complexity is 119 × 2  −  
  2   8 . 

5. Improved State-recovery Attack on KETJE JR when r=32 

From the above discussion, the number of possible internal state values is 2   when 4 consecutive 32-bit 

keysteam blocks are known. In this section, we propose an improved state-recovery attack on KETJE JR when 

𝑟 = 32 (as shown in Fig. 6). 

ρπ χι θθ

A0 B0 C0 A1 B1 C1 A2 B2 C2 A3

ρπ χι θ ρπ χι

Guess
Deduce SieveSieve

DeduceCheck Deduce

: Known bits

: Bits used to sieve : Bits derived from Aw : Bits derived from Au

: Known bits: Known bits : Uknown bits

: Bits without the form of f(Au)⊕g(Aw)

: Bits with the form of f(Au)⊕g(Aw)

 
Fig. 6: Schematic diagram of the state-recovery attack on KETJE JR using 4 keystream blocks (r=32). 

Through analysis, we find that when 𝑟 = 32, there are 4 bits known in each row of   [     ], and only 1 

bit is unknown. According to Ref. [19], each bit in the row of   [     ] can be expressed as a function of 

unknown bit in the corresponding row of   [     ]. In addition, since ρ and π are transpositions of state bits, 

each bit of   [     ]( ∈    1 2 3 4 ) is a function with respect to an unknown bit of   [     ]. Suppose that 

   is the internal state needed to be restored. Similar to section 4,  𝑢 is defined as a 105-bit state composed 

of the front half of    and the parity bit   [7], and  𝑤 is defined as a 105-bit state composed of the back half 

of    and the parity bit   [3]. Then each bit in    can be expressed as a linear function of  𝑢 or  𝑤. In this 

way, linear equations of unknown bits in   [     ] and  𝑢 (or  𝑤) can be established by using   [     ]( ∈

   1 2 3 4 ). On the one hand, we can derive the linear check relations between  𝑢 and  𝑤 which would 

reduce the computational complexity; on the other hand, the algebraic expressions of unknown bits in 

  [     ] with respect to  𝑢 and  𝑤 can be obtained. 

Since 32 bits of   [     ] are known, the number of unknown bits needed to be guessed in  𝑢 and  𝑤 

are both 89. In addition, 40 linear equations with respect to the unknown bits of   [     ] and  𝑢 (or  𝑤) 

can be established by   [     ]( ∈    1 2 3 4 ). Assuming that 20 linear equations established by the front 

20 bits (  [     ]  ∈    1 2 3 4   ∈    1 2 3 ) of   [     ] contain 4 different unknown bits of   [     ]. 
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Through Gaussian elimination, 16 linear check relations with respect to 89 unknown bits of  𝑢  can be 

obtained, and each unknown bit can be expressed as a function of  𝑢. Similarly, assuming that 20 linear 

equations established by the back 20 bits (  [     ]  ∈    1 2 3 4   ∈  4 5 6 7 ) of   [     ] contain the 

other 4 different unknown bits of   [     ]. Correspondingly, 16 linear check relations with respect to 89 

unknown bits of  𝑤 can be obtained, and each unknown bit can be expressed as a function of  𝑤. Finally, 

the number of free unknown bits of  𝑢 and  𝑤 are both 73. 

From the above discussion, given  𝑢  and  𝑤 , the front half  𝑢  and the back half  𝑤  of  0  can be 

determined respectively. According to the inverse transformations of 𝜃 𝜌 𝜋, 32 known bits --  0   ( 0   =

 0[     ]  0[1    ]  0[2    ]  0[3    ]) of  0[     ] can all be expressed as a linear function of  0. Let  

 0   = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤), 

similar to section 4, it holds that 

  = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤),   = 𝑓 ( 
𝑢)⨁𝑔 ( 

𝑤). 

To sum up, from the known keystream block  0[     ] and the parity bits   [7],   [3], 42 linear 

equations with respect to  𝑢 and  𝑤 can be established to sieve the guesses of  𝑢 and  𝑤. In addition, when 

𝑟 = 32, for each row of   [     ], there is only 1 bit that is unknown. So each bit of   [     ] can be 

expressed as a function of an unknown bit of   [     ]. Meanwhile, each bit of   [     ] can be expressed as 

a function of  𝑢 and  𝑤. Thus, by using   [     ], we can establish the algebraic expressions with respect to 

the unkown bits of   [     ] and  𝑢,  𝑤. If these algebraic expressions satisfy the conditions of divide-and-

conquer, the guesses of  𝑢 and  𝑤 can be sieved based on these algebraic expressions. 

In order to obtain enough algebraic expressions satisfying the conditions of divide-and-conquer from 

  [     ], 14 bits of  𝑢 

  [4 2 1],  [3 3 1],  [4 3 1],  [4 4 1],  [1 2 2],  [  3 2],  [1 3 2], 

  [  4 2],  [2 1 3],  [1 2 3],  [1 3 3],  [3 3 3],  [3 4 3],  [4 4 3], 

and 14 bits of  𝑤 

  [4 2 5],  [3 3 5],  [4 3 5],  [4 4 5],  [1 2 6],  [  3 6],  [1 3 6], 

  [  4 6],  [2 1 7],  [1 2 7],  [1 3 7],  [3 3 7],  [3 4 7],  [4 4 7], 

28 bits in all, are guessed respectively (as shown in Fig. 7). The form of the algebraic equation of each 

bit in    is shown in Fig. 7. 
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Fig. 7: Expanded diagram of state transition of    based on preliminary guessing (𝑟 = 32) 

Similar to section 4, let   =   [1 1  ]   =   [3 1  ]     0 =   [3 4 4], and denote bits in each 

slice of    used for sieving as ( 0 𝑏0  0 𝑑0  0) (   𝑏     𝑑    )   (   𝑏     𝑑    ) (as shown in Fig. 

7), then 
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 0 =   ⨁   
, 

𝑏0 =   ⨁  ⨁   
, 

 0 =   ⨁  ⨁ 4⨁  ⨁  ⨁   , 

𝑑0 =  8⨁  ⨁ 𝑑 
, 

 0 =   ⨁ 8⨁  0⨁   
, 

 4 =    ⨁   
, 

𝑏4 =    ⨁   ⨁   
, 

 4 =    ⨁   ⨁  4⨁   ⨁   ⨁   , 

𝑑4 =   8⨁   ⨁ 𝑑 
, 

 4 =    ⨁  8⨁  0⨁   
, 

  =   ⨁ 4⨁  ⨁  ⨁   
, 

𝑏 =   ⨁   
, 

  =   ⨁ 8⨁  0⨁   , 

𝑑 =   ⨁ 𝑑 
, 

  =   ⨁   
, 

  =    ⨁  4⨁   ⨁   ⨁   
, 

𝑏 =    ⨁   
, 

  =    ⨁  8⨁  0⨁   , 

𝑑 =    ⨁ 𝑑 
, 

  =    ⨁   
, 

  =    
, 

𝑏 =    
, 

  =    , 

𝑑 =  𝑑 
, 

  =    
, 

  =    
, 

𝑏 =    
, 

  =    , 

𝑑 =  𝑑 
, 

  =    
, 

  =    
, 

𝑏 =    
, 

  =    , 

𝑑 =  𝑑 
, 

  =    
, 

  =    
, 

𝑏 =    
, 

  =    , 

𝑑 =  𝑑 
, 

  =    
, 

Through Gaussian elimination, it can be known that the rank of the above system with 20 variables 

          0 is 14, and the number of algebraic equations that can be expressed in the form 𝑓( 𝑢)⨁𝑔( 𝑤) 

is 26. Since each bit of   [     ] is a function of an unknown bit of   [     ], and there are 8 unknown bits 

in   [     ], at least 18 algebraic equations of  𝑢 and  𝑤 satisfying the conditions of divide-and-conquer 

can be obtained through Gaussian elimination. 

In summary, when 𝑟 = 32, in the improved state-recovery attack on KETJE JR using 4 consecutive 

keystream blocks, the number of algebraic equations that can be established is 18 by guessing 28 bits of   . 

The computational complexity is 2     
 = 28 , the search complexity is 2 04− 8 = 28 , and the memory 

complexity is 119 × 28  2   8 . 

6. Conclusion 

This paper studies the state-recovery attacks on the weakened version of KETJE JR v1 with the 

knowledge of several keystream blocks. Through analyzing the algebraic expressions of internal state bits in 

KETJE JR, new guessing strategies are proposed. By using new guessing strategies, we improve state-

recovery attacks on KETJE JR v1 when r=40 and r=32 that reduce the complexities of known attacks. Due to 

the influence of  , the guessing strategies given in this paper can not be applied to analyze KETJE JR v2 

directly. The state-recovery attack on KETJE JR v2 will be an important direction in our follow-up research. 
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